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The evolution of cooperation within sizable groups of nonrelated
humans offers many challenges for our understanding. Current
research has highlighted two factors boosting cooperation in
public goods interactions, namely, costly punishment of defectors
and the option to abstain from the joint enterprise. A recent
modeling approach has suggested that the autarkic option acts as
a catalyzer for the ultimate fixation of altruistic punishment. We
present an alternative, more microeconomically based model that
yields a bistable outcome instead. Evolutionary dynamics can lead
either to a Nash equilibrium of punishing and nonpunishing
cooperators or to an oscillating state without punishers.

altruistic punishment � cooperation � evolutionary game theory

Public goods pose a riddle from the evolutionary viewpoint.
Individuals who do not contribute, but exploit the public

goods, fare better than those who pay the cost by contributing.
Thus, the defectors have a higher payoff. If more successful
strategies spread, cooperation will vanish from the population,
and the public goods along with it. A strong body of theoretical
and empirical evidence points to the importance of punishment
as a major factor for sustaining cooperation in public goods
games (1–8). But how can such an altruistic trait emerge, if the
act of punishing non-contributors is costly?

An interesting suggestion has been made in ref. 9. It is based
on the assumption that players can voluntarily decide whether to
take part in the joint enterprise or not (10–12). They can obtain
an autarcic income independent of the other players’ decision.
Thus, in addition to cooperators, defectors, and punishers, there
exists a fourth type, the loners. Loners do not participate in
the public goods enterprise. Those who participate include the
defectors, who do not contribute their part, but exploit the
contributions of the other participants. Cooperators contribute
but do not punish. Punishers also contribute to the public good
but punish all those participants who fail to contribute, or who
fail to punish defectors. (The latter assumption serves to prevent
cooperators from ‘‘free-riding’’ on the punishers.) According to
ref. 9, punishers will invade and take over.

This result, however, is based on a model that effectively
allows single individuals to play a public goods game with
themselves. By contributing, they obtain a payoff that is higher
than that of loners, and as high, in fact, as if the whole population
consisted of cooperators. Thus, ‘‘a mutant cooperator can invade
a population of non-participants [ � loners],’’ and ‘‘a single
punisher can invade a population of non-participants’’ (9).
Moreover, in a population consisting only of cooperators and
punishers, the cooperators will be punished, although they did
not fail to punish defectors (because none were present). These
problems can be avoided by using the modeling assumptions
from ref. 10. In this approach, a sample of N players is randomly
selected from the population, and the members of this sample
can decide to play a public goods game or not. If a single member
wants to play, but all others refuse, then the single player is
reduced to the autarkic income, i.e., forced to act like a loner.

The differences in the modeling approach lead to different
conclusions. In contrast to ref. 9, altruistic punishers will not
always come to dominate a population of contributors, defectors,
and loners. We emphasize that we do not believe that this result

reduces the importance of punishment, but rather that its
emergence is still offering theoretical challenges.

Methods
Let x be the frequency of cooperators (who contribute but do not
punish), y that of defectors, z the loners, and w the punishers
(who contribute, and punish by reducing the payoff of defectors
by an amount �, and that of nonpunishing cooperators by an
amount ��, at a cost � resp �� to themselves). We normalize the
payoffs such that the cost for contributing is 1. Each contribution
is multiplied by a constant factor r, and the resulting total is
divided equally among all participants of the public goods game
(irrespective of whether they contributed or not). The autarkic
payoff is �. We assume that N � r � (1 � �) and � � 1 � � �
0 (other cases are of less interest). With Px, Py, etc., we denote
the average payoff for cooperators, defectors, etc.

According to ref. 9, the payoffs are Pz � �,

Py � r
x � w
1 � z

� �w, [1]

Px � r
x � w
1 � z

� 1 � ��w, [2]

Pw � r
x � w
1 � z

� 1 � ��x � �y. [3]

Following the approach in ref. 10 instead, we compute the
payoffs as Pz � �,

Py � �zN�1 � r�x � w� FN�z� � �w�N � 1�, [4]

Px � �zN�1 � �r � 1��1 � zN�1� � ryFN�z�

� ��w�N � 1��1 � �1 � y�N�2�, [5]

Pw � �zN�1 � �r � 1��1 � zN�1� � ryFN�z�

� ��x�N � 1��1 � �1 � y�N�2� � �y�N � 1�, [6]

where

FN�z� :�
1

1 � z �1 �
1 � zN

N�1 � z�
�. [7]

These expressions are, of course, considerably less simple. In ref.
9, the whole population (which is assumed to be very large) is
presented with the public goods game. In the absence of
defectors, a single cooperator or punisher will obtain r � 1 from
playing the public goods game, which is larger than the payoff
obtained by a non-participant. Moreover, in a population with-
out defectors, contributors will be punished, although they did
obviously not fail to punish defectors. Taking account of these
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modeling issues yields the terms with zN�1 and (1 � y)N�2,
respectively. The different equations lead to distinct replicator
dynamics (see Figs. 1 and 2). This dynamical system, which
describes the evolution of the frequencies in the unit simplex S4
where x � y � z � w � 1, is given by ẋ � x(Px � P� ), etc., where
P� :� xPx � yPy � zPz � wPw is the average payoff in the
population.

The main differences are the following. (i) In ref. 9, the fixed
point w � 1 (punishers only) is asymptotically stable. It corre-
sponds to a strict Nash equilibrium. In contrast, here, the xw edge
consists of fixed points, and all those with k�� 	 w � 1 are stable,
but not asymptotically stable, where

k :�
N � r
N � 1

1
N

. [8]

(ii) More importantly, on the face w � 0, ref. 9 has a homoclinic
cycle: all orbits in the interior of this face converge to z � 1 for
t3�
 and t3�
. In ref. 10, however, this face contains a fixed
point M, which is surrounded by periodic orbits. The time

averages of the payoff values Px, Py, and Pz are all equal, and
therefore equal to �. In our model, this point M is saturated in
the sense of ref. 13, and therefore a Nash equilibrium. Indeed,
at M, one has Px � (r � 1)(1 � zN�1) � �zN�1 � ryFN(z) � Pz �
P� � �, and therefore Pw � P� � ��(N � 1)[y � �x(1 � (1 �
y)N�2)] 	 0. Moreover, any orbit o with period T in the face w �
0 is attracting orbits from the interior of S4, in the sense that the
time average of the ‘‘transversal growth rate,’’ i.e., of Pw � P� , is
negative. This result can be shown as before, by noting that the
time-averages along o satisfy the equalities P̂x � P̂y � P̂z � P̂� �
�, so that

P̂w � P�̂ � ���N � 1�
1
T �

0

T

� y � �x�1 � �1 � y�N�2� dt 	 0.

[9]

The periodic orbit o is thus saturated in this sense, i.e., trans-
versally stable, and even attracting. We note that, for very large
orbits, the state spends most of the time close to z � 1. The
transversal eigenvalue, there, is 0.

Results and Discussion
In ref. 9, the dynamics always lead to the fixation of the
punishers in the population. In contrast, our model displays a
bistable behavior. Depending on the initial condition, the state
converges either to a Nash equilibrium consisting of cooper-
ators and punishers, or to a periodic orbit in the face w � 0 (no
punishers), where the frequencies of loners, defectors, and
cooperators oscillate endlessly. More precisely, let us denote
by A the segment x � y � 0, k�� � w � 1, which consists of
(nonstrict) Nash equilibria, and by B the interior of the face
w � 0, which consists of periodic orbits. Orbits in the interior
of the state space (i.e., with all types initially present) converge
either to A or to B. We are unable to delimit analytically the
basins of attractions of A and B, but numerical simulations
show that, as a rule of thumb, the fraction of initial states
leading to A is given by (� � k)�(� � �), which corresponds
to the w-value of the fixed point Q on the wy-edge. It should
be noted that, if the state converges to A, all members of the
population end up with payoff r � 1 whereas, if the state
converges to B, the time averages are only �. Punishers are
important for the sake of the society, but they cannot invade
a population consisting only of defectors. The reason why, in
ref. 9, the outcome is different from ours is that the odds, in
ref. 9, favor punishers in two ways. On the one hand, coop-
erators will be punished even if there are no defectors around,
and thus will be unable to invade a population of punishers by

Fig. 1. Replicator dynamics on the boundary faces of the simplex S4 for the payoff expressions in ref. 9 (Left) and in our model (Right). Filled circles represent
stable fixed points, and open circles unstable fixed points. Parameter values are in both cases r � 3, � � 0.1, � � 1.2, � � 1, and � � 1. Furthermore, n � 5. Note
the differences in the faces w � 0 and z � 0. But in both cases, cooperators, defectors, and loners form a rock-paper-scissors cycle.

Fig. 2. Replicator dynamics in the interior of the state space S4 for the payoff
expressions given by our model. The parameter values are as before. The initial
states marked by dark dots lead to the attractor A (mixtures of cooperators
and punishers); the initial states marked by bright dots lead to the attractor B
(periodic orbits with no punishers).
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neutral drift. On the other hand, in the absence of punishers,
the state z � 1 (loners only) is a homoclinic attractor. Each
invasion of contributors is quickly repressed so that, up to rare,
intermittent bursts of cooperation, the population is reduced
to the autarkic way of life. Because it is allowed, additionally,
that even ‘‘a single punisher can invade a population of loners’’
(9), the ultimate domination by punishers is greatly furthered.

Of course there are many ways that a public good may
depend on the number of contributors and defectors. It is by
no means necessary to assume, as we have done in our model,
that, in a group of two cooperators and no defectors, the payoff
is as high as in a group of a hundred cooperators and no
defectors. But the model should always ref lect that contrib-
uting to a public goods enterprise is a risky investment, whose
eventual return depends on other players. An isolated public

goods contributor should not obtain single-handedly more
than a non-participant.

There is another reason why it is plausible to assume that any
given public goods game is offered only to a small fraction of
the population, a sample of size N (with N a one- or two-digit
number). During most of human evolution, total population
numbers were fairly large (in the ten thousands and more), but
it is unlikely that, in the absence of modern institutions, more
than a few dozens, or hundreds, could have been presented
with the same joint endeavor. In this sense, our model has the
advantage of being based on an explicit microeconomical
foundation.

Fowler’s idea in ref. 9, of analyzing the interplay between (i)
abstaining from participating and (ii) punishing the exploiters,
offers considerable interest. Our model shows that both abstain-
ing and punishing are possible as long-term outcomes.
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